
SD MAY 20-58: K8s CheckmateSD MAY 20-58: K8s Checkmate
Daniel Brink
Jacob Cram
Sean Sailer
Alex Stevenson
John Young

Daniel Brink
Jacob Cram
Sean Sailer
Alex Stevenson
John Young

Workiva
Julie Rursch

Workiva
Julie Rursch

20202020

Problem StatementProblem Statement
Companies such as Google, Slack, and Shopify all rely on Kubernetes 
containerized environments to run their applications. As containerized 
deployment of applications becomes more and more popular, so too 
does their use as attack vectors by malicious parties. An incorrect 
configuration of these containers can lead to exploitable code, private 
network access, or malicious image injections that can shut down the 
application, and even extract sensitive information of its users.

RRecent security breaches, such as the Equifax breach of 2017, are 
usually caused by a very small vulnerabilites that are overlooked due to 
a lack of knowledge or experience, and they result in the destruction of 
a system, or even worse, a leak of sensitive information. These 
breaches lead to a mistrust in technology and the companies who 
develop them. These breaches cost companies millions in lost revenue, 
millions in legal fees, and an immeasurable amount in consumer trust.

Our solution to the problem of containerized security is K8s Checkmate, 
a simple-to-use, lightweight CLI program that allows a user to verify 
their Kubernetes configuration meets a pre-defined ruleset. 

The user gets The user gets real-time visual feedback on their security policies, and if 
they fail, what caused them to fail. Additionally, log files of the results 
are generated and stored to a user-specified directory. These log files 
allow the user to analyze historical results, as well as perform big-data 
analysis on how their security has evolved over time. 

SolutionSolution

Technical DetailsTechnical Details

Open-Source

Python Command-Line Interface

Continuous Integration

Developers working with 
Kubernetes containerized 
environments.

System administrators who deal 
with log files 

Enforce user-defined security 
policies for Helm charts and values.

Analyze historical outputs via log 
files for record-keeping, analysis, or 
debugging purposes.

UsersUsers UsesUses 

Design RequirementsDesign Requirements
Functional Requirements

Parse Helm charts and check 
them against a user’s security 
policy

Provide real-time feedback on 
policy status and provide 
feedback on how to fix failures

Generate log Generate log files for 
record-keping and long-term 
analysis

Compatible with *NIX systems, 
such as Linux, MacOS, etc..

Fast execution time relative to 
the size and contents of chart 
and policy files (< 1 second).

Lightweight footprint that allows 
for a quick install, regardless of 
network performance (< 1 MB).

ExtensiExtensive documentation for 
new users, including setup and 
execution of the application.

Must support verification of 
multiple files per run

Non-Functional Requirements
In our project, we used many engineering standards and design practices 
that are reccomended and followed by the software community. We followed 
the Agilr Scrum methodology, along with Test-Driven Development (TDD).

Agile (12207-2017 IEEE System life cycle process)

Unit Testing (1008-1987 - IEEE Standard for Software Unit Testing)

Engineering Standards & 
Design Practices
Engineering Standards & 
Design Practices

Design ApproachDesign Approach

Design ApproachDesign Approach


